Monte Carlo methods for Bayesian analysis of constrained parameter problems

نویسنده

  • MING-HUI CHEN
چکیده

Constraints on the parameters in a Bayesian hierarchical model typically make Bayesian computation and analysis complicated. Posterior densities that contain analytically intractable integrals as normalising constants depending on the hyperparameters often make implementation of Gibbs sampling or the Metropolis algorithms difficult. By using reweighting mixtures (Geyer, 1995), we develop alternative simulation-based methods to determine properties of the desired Bayesian posterior distribution. Necessary theory and two illustrative examples are provided.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Monte Carlo Methods on Bayesian Analysis of Constrained Parameter Problems with Normalizing Constants

Constraints on the parameters in a Bayesian hierarchical model typically make Bayesian computation and analysis complicated. As Gelfand, Smith and Lee (1992) remarked, it is almost impossible to sample from a posterior distribution when its density contains analytically intractable integrals (normalizing constants) that depend on the (hyper) parameters. Therefore, the Gibbs sampler or the Metro...

متن کامل

A Bayesian Networks Approach to Reliability Analysis of a Launch Vehicle Liquid Propellant Engine

This paper presents an extension of Bayesian networks (BN) applied to reliability analysis of an open gas generator cycle Liquid propellant engine (OGLE) of launch vehicles. There are several methods for system reliability analysis such as RBD, FTA, FMEA, Markov Chains, and etc. But for complex systems such as LV, they are not all efficiently applicable due to failure dependencies between compo...

متن کامل

Discretization-Invariant MCMC Methods for PDE-constrained Bayesian Inverse Problems in Infinite Dimensional Parameter Spaces

In this paper we target at developing discretization-invariant, namely dimension-independent, Markov chain Monte Carlo (MCMC) methods to explore PDEconstrained Bayesian inverse problems in infinite dimensional parameter spaces. In particular, we present two frameworks to achieve this goal: Metropolize-then-discretize and discretize-then-Metropolize. The former refers to the method of first prop...

متن کامل

Analysis of Dependency Structure of Default Processes Based on Bayesian Copula

One of the main problems in credit risk management is the correlated default. In large portfolios, computing the default dependencies among issuers is an essential part in quantifying the portfolio's credit. The most important problems related to credit risk management are understanding the complex dependence structure of the associated variables and lacking the data. This paper aims at introdu...

متن کامل

FEM-Based Discretization-Invariant MCMC Methods for PDE-constrained Bayesian Inverse Problems

We present a systematic construction of FEM-based dimension-independent (discretization-invariant) Markov chain Monte Carlo (MCMC) approaches to explore PDE-constrained Bayesian inverse problems in infinite dimensional parameter spaces. In particular, we consider two frameworks to achieve this goal: Metropolize-then-discretize and discretize-then-Metropolize. The former refers to the method of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005